Sponsored Links
-->

Kamis, 26 April 2018

Much of the technology in the New York subway system hasn't been ...
src: static1.uk.businessinsider.com

Since the late 20th century, the Metropolitan Transportation Authority has started several projects to maintain and improve the New York City Subway. Some of these projects, such as subway line automation, proposed platform screen doors, the FASTRACK maintenance program, and infrastructural improvements proposed in 2015-2019 Capital Program, contribute toward improving the system's efficiency. Others, such as train-arrival "countdown clocks", "Help Point" station intercoms, "On the Go! Travel Station" passenger kiosks, wireless and cellular network connections in stations, MetroCard fare payment alternatives, and digital ads, are meant to benefit individual passengers. Yet others, including the various methods of subway construction, do not directly impact the passenger interface, but are used to make subway operations efficient.

In the mid-1990s, it started converting the BMT Canarsie Line to use communications-based train control, utilizing a moving block signal system that allowed more trains to use the tracks and thus increasing passenger capacity. After the Canarsie Line tests were successful, the MTA expanded the automation program in the 2000s and 2010s to include other lines. This led to a 2017 proposal to install platform screen doors in one Canarsie Line station. Additionally, as part of another program called FASTRACK, the MTA started closing certain lines during weekday nights in 2012, with each of the lines closing overnight for a week in order to allow workers to clean these lines without being hindered by train movements. The program was expanded beyond Manhattan the next year after noticing how efficient the FASTRACK program was compared to previous service diversions. In 2015, the MTA announced a wide-ranging improvement program as part of the 2015-2019 Capital Program. Thirty stations would be extensively rebuilt under the Enhanced Station Initiative, and new R211 subway cars would be able to fit more passengers.

The MTA has also started some projects to improve passenger amenities. It added train arrival "countdown clocks" to most A Division (numbered route) stations and the BMT Canarsie Line (L train) by late 2011, allowing passengers on these routes to see train arrival times using real-time data. A similar countdown-clock project for the B Division (lettered routes) and the IRT Flushing Line was deferred until 2016, when a new Bluetooth-based clock system was tested successfully. Beginning in 2011, the MTA installed "Help Point" to aid with emergency calls or station agent assistance, in all stations. Interactive touchscreen "On The Go! Travel Station" kiosks, which give station advisories, itineraries, and timetables, were installed starting in 2011. Cellular phone and wireless data in stations, first installed in 2011 as part of a pilot program, was expanded systemwide due to positive passenger feedback. Additionally, credit-card trials at several subway stations in 2006 and 2010 led to proposals for contactless payment to replace the aging MetroCard system used to pay fares on MTA-operated transportation. Finally, in 2017, the MTA started installing digital advertisements in trains and stations


Video Technology of the New York City Subway



Construction methods

When the IRT subway debuted in 1904, the typical tunnel construction method was cut-and-cover. The street was torn up to dig the tunnel below before being rebuilt from above. Traffic on the street above would be interrupted due to the digging up of the street. Temporary steel and wooden bridges carried surface traffic above the construction. The 7,700 workers who built the original subway lines were mostly immigrants living in Manhattan.

Contractors in this type of construction faced many obstacles, both natural and man-made. They had to deal with rock formations, and ground water, which required pumps. Twelve miles of sewers, as well as water and gas mains, electric conduits, and New York City steam system pipes had to be rerouted. Street railways had to be torn up to allow the work. The foundations of tall buildings often ran near the subway construction, and in some cases needed underpinning to ensure stability.

This method worked well for digging soft dirt and gravel near the street surface. However, tunnelling shields were required for deeper sections, such as the Harlem and East River tunnels, which used cast-iron tubes. Segments between 33rd and 42nd streets under Park Avenue, 116th Street and 120th Street under Broadway, and 145th Street and Dyckman Street (Fort George) under Broadway and Saint Nicholas Avenue as well as the tunnel from 96th Street to Central Park North-110th Street & Lenox Avenue, used either rock or concrete-lined tunnels.

About 40% of the subway system runs on surface or elevated tracks, including steel or cast iron elevated structures, concrete viaducts, embankments, open cuts and surface routes. All of these construction methods are completely grade-separated from road and pedestrian crossings, and most crossings of two subway tracks are grade-separated with flying junctions. The sole level junctions of two lines in regular revenue service are the 142nd Street junction and the Myrtle Avenue junction.

More recent projects use tunnel boring machines, which minimize disruption at street level and avoid already existing utilities, but increase cost. Examples of such projects include the extension of the IRT Flushing Line and the IND Second Avenue Line.


Maps Technology of the New York City Subway



Automation and signaling

The MTA has plans to upgrade much of New York City Subway system from a fixed block signaling system to one with communications-based train control (CBTC) technology, which will control the speed and starting and stopping of subway trains. The CBTC system is mostly automated and uses a moving block system - which reduces headways between trains, increases train frequencies and capacities, and relays the trains' positions to a control room - rather than a fixed block system. This will require new rolling stock to be built for the subway system, as only newer trains can use CBTC systems.

Trains using CBTC locate themselves based on measuring their distance past fixed transponders installed between the rails. Trains equipped with CBTC have a transponder interrogator antenna beneath each carriage, which communicates with the fixed trackside transponders and report the trains' location to a wayside Zone Controller via radio. Then, the Controller issues Movement Authorities to the trains. This technology upgrade will allow trains to be operated at closer distances, slightly increasing capacity; will allow the MTA to keep track of trains in real time and provide more information to the public regarding train arrivals and delays; and will obviate the need for complex interlocking towers. The trains are also equipped with high-tech computers inside the cab so that the conductor could monitor the train's speed and relative location.

First two lines

The BMT Canarsie Line (L service) was the first line to implement the automated technology using Siemens's Trainguard MT CBTC system, as it was a self-contained line with none of the route interlining seen elsewhere around the system. The CBTC project was first proposed in 1994 and approved by the MTA in 1997. Installation of the signal system was begun in 2000. Initial testing began in 2004, and installation was mostly completed by December 2006, with all CBTC-equipped R143 subway cars in service by that date. Due to an unexpected ridership increase on the Canarsie Line, the MTA ordered more R160 cars and these were put into service in 2010. This enabled the agency to operate up to 26 trains per hour up from the May 2007 service level of 15 trains per hour, an achievement that would not be possible without the CBTC technology or a redesign of the previous automatic block signal system. The R143s and R160s both use Trainguard MT CBTC, supplied by Siemens.

The next line to have CBTC installed was the pre-existing IRT Flushing Line and its western extension opened in 2015 (served by the 7 and <7> trains). The Flushing Line was chosen for the second implementation of CBTC because it is also a self-contained line with no direct connections to other subway lines currently in use. The 2010-2014 capital budget provided funding for CBTC installation on the Flushing Line, with scheduled installation originally set for completion in 2016. The R188 cars were ordered in 2010 to equip the line with compatible rolling stock. This order consists of new cars and retrofits of existing R142A cars for CBTC. However, the CBTC retrofit date was later pushed back to 2017 or 2018. The installation is being done by Thales Group.

Expansion

Siemens and Thales successfully conducted tests on one of the IND Culver Line's tracks to determine if their CBTC systems were compatible, thus allowing installation of CBTC on the rest of the B Division. In 2016, Siemens and Thales were awarded a contract to install CBTC on the IND Queens Boulevard Line from 50th Street/8th Avenue and 47th-50th Streets-Rockefeller Center to Kew Gardens-Union Turnpike. Planning for phase one started in 2015 and was complete by February 2016, with major engineering work following in November 2016. Funding for CBTC on the IND Eighth Avenue Line from 59th Street-Columbus Circle to High Street is also provided in the 2015-2019 Capital Program, along with the modernization of interlockings at 30th and 42nd Streets. The local tracks of the IND Culver Line would also get CBTC as part of the 2015-2019 Capital Program, as well as the entire line between Church Avenue and West Eighth Street-New York Aquarium, with three interlockings to be upgraded on that stretch.

As of 2014, MTA projects that 355 miles of track will receive CBTC signals by 2029, including most of the IND, as well as the IRT Lexington Avenue Line and the BMT Broadway Line. The MTA also is planning to install CBTC equipment on the IND Crosstown Line, the BMT Fourth Avenue Line and the BMT Brighton Line before 2025.

Additionally, the New York City Subway uses a system known as Automatic Train Supervision (ATS) for dispatching and train routing on the A Division (the Flushing line, and the trains used on the 7 and <7> services, do not have ATS.) ATS allows dispatchers in the Operations Control Center (OCC) to see where trains are in real time, and whether each individual train is running early or late. Dispatchers can hold trains for connections, re-route trains, or short-turn trains to provide better service when a disruption causes delays.

Other ideas

In 2017, the MTA started testing ultra-wideband radio-enabled train signaling on the IND Culver Line. The ultra-wideband train signals would be able to carry more data wirelessly in a manner similar to CBTC, but can be installed faster. The ultra-wideband signals would have the added benefit of allowing passengers to use cellphones while between stations, instead of the current setup (see Technology of the New York City Subway § Cellular phone and wireless data) that only provides cellphone signals within the stations.


MetroCard Replacement Offers Chance to Improve New York City ...
src: si.wsj.net


Platform screen doors

The MTA has long been reluctant to install platform screen doors in the subway system, though it had been considering such an idea since the 1980s. Originally, it was planned to install platform doors in several stations along the Second Avenue Subway, but their installation presented substantial technical challenges, as there are different placements of doors on New York City Subway rolling stock. The Second Avenue Subway screen-door was scrapped in 2012 as cost-prohibitive.

The MTA is also interested in retrofitting platform screen doors on the Canarsie Line, along the L train, and on the IRT Flushing Line, along the 7 and <7> trains. However, it is unlikely that the entire New York City Subway system will get retrofitted with platform screen doors or automatic platform gates due to, again, the varying placements of doors on rolling stock. Following a series of incidents during one week in November 2016, in which 3 people were injured or killed after being pushed into tracks, the MTA started to consider installing platform edge doors for the 42nd Street Shuttle.

In October 2017, it was announced that as part of a pilot program, the Canarsie Line's Third Avenue station is planned to be refitted with platform screen doors while the 14th Street Tunnel is rebuilt from April 2019 to March 2020. This is possible as a result of the L train's automated train operation. The MTA will use the results of the pilot in order to determine the feasibility of adding such doors citywide. The PSDs will be approximately 54 inches (140 cm) high and will be coordinated with the location of the subway car doors when a train is in the station. To ensure that the subway car is precisely lined up with the doors, a wayside-only berthing system will be installed. Emergency egress gates will be installed in between the regular doors to allow people to exit in the case of an emergency. The platform edges and topping will be removed and replaced so that they align with the sills of the train doors and to be in compliance with the Americans with Disabilities Act of 1990. To ensure that people do not get trapped in between the subway car doors and the PSDs, sensors and CCTV cameras will be installed with monitors at the center and front of the platforms visible to the train operator and conductor.


Technology of the New York City Subway - Wikipedia
src: upload.wikimedia.org


FASTRACK

In January 2012, the MTA introduced a new maintenance program, FASTRACK, to speed up repair work. This program involves a more drastic approach than previous construction, and completely shuts down a major portion of a line for overnight work on four consecutive weeknights from 10 p.m. to 6 a.m. According to the MTA, this new program proved much more efficient and quicker than regular service changes, especially because it happened at night and not the weekend, when most transit closures had occurred before. In 2012 the program only closed lines in Midtown and Lower Manhattan, but due to the success of the program, the MTA decided to expand it to the outer boroughs as well. In 2013, FASTRACK was expanded to other corridors requiring minimal shuttle buses and in 2014 to even more locations. There were corridors scheduled for 2014 during 24 weeks of the year, 12 corridors scheduled during 22 weeks in 2015, and 13 corridors scheduled during 21 weeks in 2016.

As part of an $836 million program to resolve the subway's 2017 state of emergency, MTA Chairman Joe Lhota announced the expansion of the FASTRACK program in order to fix critical infrastructure faster.


To Flood-Proof Subways, N.Y. Looks At Everything From Plugs To ...
src: media.npr.org


2015-2019 Capital Program overhaul

Enhanced Station Initiative

The 2015-2019 MTA Capital Plan included funds for the Enhanced Station Initiative (ESI), under which thirty-three stations in all five boroughs would undergo a complete overhaul and would be entirely closed for up to 6 months at a time. The 34th Street-Penn Station stops on the IRT Broadway-Seventh Avenue Line and IND Eighth Avenue Line were added to the plan later, but would not be entirely closed due to their key location. The thirty original stations as part of the ESI would be rebuilt for $881 million, the two Penn Station stops would be rebuilt for $40 million, and the Richmond Valley stop on the Staten Island Railway would be rebuilt for $15 million. Five stations on the Metro-North Railroad were added to the plan in December 2017.

Updates would include cellular service, Wi-Fi, charging stations, interactive service advisories and maps, improved signage, strip maps for the subway routes, subway countdown clocks, service alerts, On-The-Go Informational Dashboards, neighborhood maps, new art, and improved station lighting. Cables and conduits would be decluttered, simplifying the stations' wiring. The stations would also include glass barriers near fare control areas (rather than the metal fences that separate the paid and unpaid areas of the stations), as well as new tiled floors that are easy to clean. Concrete repairs, new platform edges, waterproofing, most tile patching, and structural steel repairs would get the stations into states of good repair. One additional station, Richmond Valley of the Staten Island Railway, would be overhauled.

The renovations are being done in several stages called "packages," which would allow contractors to renovate three to five stations in a given area simultaneously. The first four packages would be completed in thirty-three months, by late 2019. The first package consisted of the Prospect Avenue, 53rd Street and Bay Ridge Avenue stations along the BMT Fourth Avenue Line in Brooklyn, for which the contract was awarded on November 30, 2016. From March to June 2017, these stations closed for construction, reopening from September to November 2017. The second group of stations, comprising the 30th Avenue, Broadway, 36th Avenue, and 39th Avenue stations on the BMT Astoria Line in Queens, was awarded on April 14, 2017, to Skanska USA, and entails renovating these stations on a staggered schedule from October 2017 to late 2018. Originally, this package entailed renovating one platform at a time since the stations are all consecutive, unlike in other packages, but the plan was later amended so two sets of two non-consecutive stations would be completely closed at once.

The third package of stations will be on the IND Eighth Avenue Line in Manhattan. The 163rd Street, 110th Street, 86th Street, and 72nd Street stations are included as part of an amendment to the Capital Program. The New York City Transit and Bus Committee officially recommended that the MTA Board award the $111 million contract for Package 3 to ECCO III Enterprises in October 2017. These stations are expected to be closed on a staggered schedule between March and June 2018, and reopen in September or October 2018. The fourth package of stations will consist of stations in midtown Manhattan, and will include the 34th Street-Penn Station stops on the IND Eighth Avenue Line and the IRT Broadway-Seventh Avenue Line, 57th Street and 23rd Street on the IND Sixth Avenue Line, and 28th Street on the IRT Lexington Avenue Line. The fifth and final package for the New York City Subway will include the remaining three stations in upper Manhattan and the southwest Bronx: 145th Street on the IRT Lenox Avenue Line, and 167th Street and 174th-175th Streets on the IND Concourse Line. It was originally the eighth of eight planned packages. An additional package would include the Metro-North Railroad stations at White Plains, Harlem-125th Street, Crestwood, Port Chester, and Riverdale.

The ESI program formerly contained thirteen more stations in three packages numbered 5 through 7, but these were deferred to the 2020-2024 Capital Program due to a lack of funding. The fifth package of stations would have been in northern and eastern Brooklyn, along with Richmond Valley of the SIR. This package would have included Flushing Avenue and Classon Avenue on the IND Crosstown Line, and Van Siclen Avenue, Kingston-Throop Avenues, and Clinton-Washington Avenues on the IND Fulton Street Line. The sixth package would have included stations in the eastern and northern Bronx, comprising Pelham Parkway on the IRT Dyre Avenue Line, as well as Third Avenue-138th Street, Brook Avenue, East 149th Street, and Westchester Square-East Tremont Avenue on the IRT Pelham Line. The seventh package would have include three stations on the IND Queens Boulevard Line: Northern Boulevard, 67th Avenue, and Parsons Boulevard.

In July 2017, after Package 1 had been assigned, the nonprofit Citizens Budget Commission released a study critical of the plan. In the study, the CBC noted that the 30 original stations only constituted 8% of weekday boardings, and none of these stations were in the list of 25 most-used stations in 2016. Compared to stations that would only be "renewed" under this Capital Plan, i.e. with less comprehensive improvements performed under partial closures, the average ESI station could be 2 to 2.5 times as expensive as the average non-ESI station. The CBC wrote that the MTA had added $857 million to the ESI's original $64 million in funding, and that the cost of extensive renovations offset the savings afforded by using design-build contracts for ESI projects. The ESI program has also been criticized for the full station closures that entails, which force riders to walk to the next station and add extra time to their commute. Some transit advocates have also pointed out that the Enhanced Station Initiative does not include improvements, such as elevators, that would make the stations compliant with the Americans with Disabilities Act of 1990.

In January 2018, the NYCT and Bus Committee recommended that Judlau Contracting receive the $125 million contract for Package 4 and that Citnalta-Forte receive the $125 million contract for Package 8. However, the MTA Board temporarily deferred the vote for these packages after city representatives refused to vote to award the contracts, citing the high cost and relatively low importance of the program. Some executives had pointed out that improving subway service was more important than renovating stations that were used by relatively few people. In response, MTA Chairman Joe Lhota said that these stations had been selected because ESI was a "pilot" program, and thus, the renovations would be tested on smaller stations first. NYCT Chairman Andy Byford looked over the list of ESI stations and concluded that the list was suitable because these stations were in need of structural improvements. He said that the MTA's decision to not add elevators was reasonable because the work involved would have delayed many of the projects for several years, and in some cases, other nearby stops already had or were getting elevators. The ESI packages were put back for a vote in February, and the two contracts were ultimately approved, with three city representatives dissenting.

In April 2018, Lhota announced that cost overruns had forced the MTA to reduce the number of subway stations included in the program from 33 stations to 19. The 19 subway stations still part of the program include those in Packages 1, 2, 3, 4, and 8, although the Staten Island Railway's Richmond Valley station from package 5 would still be included. Most of the $936 million allocated to the ESI was already used for the 19 stations underway. During the work, contractors had discovered additional infrastructure issues that had to be dealt with. In total, the work on the 19 subway stations will cost $850 million. The remaining $86 million will be used for subway accessibility projects. The 13 stations without funding will be pushed back to the 2020-2024 Capital Plan.

Other components

Minor component work, such as station signage, tiling, and lighting, would also be performed at over 170 other stations as part of the plan. The MTA would also begin designing a new contactless fare payment system to replace the MetroCard (see § Contactless payment trials).

In addition, at least 1,025 R211 subway cars are expected to be ordered under the plan. The R211s would include 58-inch (150 cm) wide doors, wider than the current MTA standard of 50 inches (130 cm), thereby projected to reduce station dwell time by 32%. The new cars will have Wi-Fi installed (see § Cellular phone and wireless data), USB chargers, digital advertisements, digital customer information displays, illuminated door opening alerts, and security cameras, unlike the current New Technology Trains, which lack these features. Some lines, like the IND Eighth Avenue Line, would get communications-based train control as part of a larger plan to automate the system. These measures are all projected to help reduce overcrowding on the subway, which is prevalent.


R211 (New York City Subway car) - Wikipedia
src: upload.wikimedia.org


Train arrival "countdown clocks"

Mainline A Division and Canarsie Line clocks

In 2003, the MTA signed a $160 million contract with Siemens Transportation Systems to install digital real-time message boards (officially Public Address Customer Information Screens, or PA/CIS) at 158 of its IRT stations to display the number of minutes until the arrival of the next trains. Payments to the company were stopped in May 2006 following many technical problems and delays and MTA started to look for alternative suppliers and technologies. In January 2007 Siemens announced that the issues had been resolved and that screens would start appearing at 158 stations by the end of the year. In 2008, the system-wide roll-out was pushed back again, to 2011, with the MTA citing technical problems.

An in-house simpler system developed by MTA for the L train was operational by early 2009 and the first three displays of the larger Siemens system became operational at stations on the IRT Pelham Line (6 and <6> trains) in the Bronx in December 2009. Siemens signs were in operation in 110 A Division stations by March 2011 and in 153 IRT mainline and 24 Canarsie Line stations by late 2011. Simpler countdown clocks, which only announce the track on which the train is arriving and the number of stops the train is from the station, are used at 40 stations. This includes thirteen stations on the IND Queens Boulevard Line, nineteen stations on the IND Eighth Avenue Line (including four that also have next-train displays that show this information), three stations on the BMT Broadway Line, and five stations on the BMT Astoria Line; however, the clocks on the Broadway and Astoria Lines are not in use as of 2016. The announcements are voiced by radio traffic reporter Bernie Wagenblast and Carolyn Hopkins.

In 2012, real-time station information for the "mainline" IRT, comprising all the IRT services except the 7 train, was made available to third party developers via an API, through MTA's Subway Time mobile app and as open data. In early 2014, data for the L train were also given to developers.

Displays at 22 IRT Flushing Line and the 5 IRT Dyre Avenue Line stations are not expected to be operational until the late 2010s, with the delay being attributed to upgrades to upgrading the signal system with CBTC for the IRT Flushing Line stations and to signal modernizations for IRT Dyre Avenue Line stations.

Mainline B Division and Flushing Line clocks

Displays at 267 B Division stations were funded as part of the 2015-2019 capital program. Upon the October 2015 approval of funding for the 2015-2019 capital program, full installation of the countdown clocks was deferred to beyond 2020, with 323 out of 472 stations having countdown clocks by then. This was attributed to the rate of installation of wi-fi and 3G systems in subway stations, which, among other things, makes countdown clocks viable. The B, D, and N were expected to get countdown clocks in 2016; the B and D would get the PA/CIS along their shared IND Concourse Line stations, the D along the BMT West End Line, and the N along the BMT Sea Beach Line. Meanwhile, the IRT Flushing Line (7 and <7>) was to get the clocks in 2018, a delay from an earlier announced date of 2016.

In August 2016, a 90-day testing period began for updated countdown clocks on eight BMT Broadway Line stations on the N, Q, R, and W services. The clocks feature new LCD screens as opposed to the old LED screens. The new countdown clocks show the date and time, current weather, next trains, advertisements, other media, and service changes, unlike the old countdown clocks, which can only show the date and time and the next train arrivals. The LCD clocks also use data from the Bluetooth receivers installed at the end of each platform in the stations, which connect with Bluetooth receivers installed on the first and last cars of every train. If the test was successful, the remaining 269 B Division stations would receive the new LCD countdown clocks. The MTA was able to speed up the test by using Bluetooth receivers and wireless data in stations. As opposed to the countdown clocks on the numbered lines, the system calculates when the trains will pull into their next stop based on when trains enter and leave the stations. The new Bluetooth clocks performed accurately 97% of the time.

In November 2016, the MTA declared the Broadway Line countdown clock test successful. All B Division stations would get countdown clocks by March 2018 (several years ahead of schedule), using the same Bluetooth technology as the clocks in the Broadway Line stations. The countdown clocks would utilize either existing and new Siemens tricolor LED displays like the ones on the A Division and across scattered parts of the B Division, or new multicolor LCD display like the ones on the Broadway Line. The R was the first mainline B Division route to receive countdown clocks along its entire length in July 2017. Under the MTA's rolllout schedule released in July 2017, the countdown clocks on other routes would be enabled in stages through December 2017, including on the L train, where the existing LED clocks would be upgraded to use the new LCD displays. All of the countdown-clock data for the B Division services would also be available in the MTA's Subway Time app, in addition to the data for the A Division and L services that were already included in the app prior to the test.

The countdown clocks for the rest of the B Division will be installed as part of the Integrated Service Information and Management - B Division (ISIM-B) project, which will upgrade signal towers and connect track circuits to a central database. The project is called the Beacon Train Arrival System, and all 268 underground stations will have it installed by the end of 2017. In each of the remaining 269 stations without countdown clocks, there would be two displays for each platform, as well as a single display installed just outside fare control. The cost would be around $31.7 million to install, plus $5 million in annual maintenance costs. Since the clocks are based on the Transit Wireless Wi-Fi, installation of each set of displays would cost $211,000 at every aboveground station (which did not have Transit Wireless as of 2016) and $54,000 at every underground station with Transit Wireless. The MTA would upgrade the aboveground stations so they could also get Wi-Fi capabilities.

As the first batch of Bluetooth-enabled B Division countdown clocks was installed in September 2017, there were some passenger complaints about the location of the clocks. Although the MTA places the clocks at the middle of each platform, as well as offers train arrival data on its Subway Time app, riders noted that these clocks were not always placed near locations where the riders would actually wait, such as the stairs to the platforms or the station entrances. Sometimes, the clocks were hidden behind signs or located far away from the station entrances. Riders also reported instances where the clocks froze, displayed the wrong information, projected wildly fluctuating arrival times, or forgot to display upcoming trains.


NYC's next subway cars have WiFi and USB ports built-in
src: s.aolcdn.com


Fares

Access to the paid area is by turnstile. Starting in 1992, MetroCards made by Cubic Transportation Systems replaced the subway tokens that had been used as the subway's form of fare payment from the 1950s on; by 2003, the MetroCard was the exclusive method of fare payment systemwide. Since then, there have been programs to replace the MetroCard itself. In the first program, introduced in early 2006, the MTA signed a deal with MasterCard to test out a new radio-frequency identification card payment scheme. Customers had to sign up at a special MasterCard website and use a MasterCard PayPass credit or debit card/tag to participate. Participating stations included IRT Lexington Avenue Line (4, 5, 6, and <6> trains) from the Third Avenue-138th Street and 138th Street-Grand Concourse stations in the Bronx to Borough Hall in Brooklyn, as well as the Court Square-23rd Street in Queens for the E and M 7 and <7> trains. Originally scheduled to end in December 2006, the trial was extended into 2007 due to "overwhelming positive response".

In light of the success of the first PayPass pilot project in 2006, another trial was started by the MTA. This one started on June 1, 2010, and ended on November 30, 2010. The first two months started with the customer just using the MasterCard PayPass debit or credit card. However, this trial was the debut of having a rider use the VISA PayWave debit or credit card to enter the system, which started on August 1, 2010. For six months, a rider could use either a MasterCard Paypass or VISA PayWave credit/debit card to pay for a fare on an expanded list of subway and bus routes.

In 2016, the MTA announced that it would begin designing a new contactless fare payment system to replace the MetroCard. The system would probably use phone- and bank card-based payment systems like Apple Pay and Android Pay. In April 2016, MTA solicited proposals for a contactless "New Fare Payment System" to replace the MetroCard by 2022. The replacement system was planned for partial implementation as early as 2018.

In October 2017, the MTA started installing eTix-compatible electronic ticketing turnstiles in 14 stations in Manhattan. The eTix system, already used on the Long Island Rail Road and Metro-North Railroad, allows passengers to pay their fares using their phones. The system would originally be for MTA employees only. On October 23, 2017, it was announced that the MetroCard would be phased out and replaced by a contactless fare payment system also by Cubic, with fare payment being made using Apple Pay, Google Wallet, debit/credit cards with near-field communication enabled, or radio-frequency identification cards. The October 23 announcement calls for the expansion of this system to a general-use electronic fare payment system at 500 subway turnstiles and 600 buses by late 2018, with all buses and subway stations using electronic fare collection by 2020. However, support of the MetroCard is slated to remain until 2023. The unnamed replacement fare system has been criticized because the new turnstiles could be hacked, thereby leaving credit card and phone information vulnerable to theft.


R160 (New York City Subway car) - Wikipedia
src: upload.wikimedia.org


Help Point

The MTA set up another technology pilot project called "Help Point" in April 2011. Help Point, a new digital-audio communications system, was designed for use in case of an emergency or to obtain subway information for travel directions. The top button is labeled red for emergencies and connects to the Rail Control Center. The bottom button is labeled green and connects to a MTA station agent for any inquiries. All units are equipped with a microphone and speaker, and can optionally be installed with a camera. Also, the test units were equipped for the hearing impaired (under ADA compliance).

The two subway stations that were part of this trial were on the IRT Lexington Avenue Line. They were the 23rd Street and the Brooklyn Bridge-City Hall stations. The Help Points at the Brooklyn Bridge-City Hall station were wireless, while those at the 23rd Street station ones were hard-wired, to test which type of transmission is best for the subway.

After the Help Point test was successfully completed, the MTA started to install Help Points in all 472 subway stations to replace the existing Customer Assistance Intercom (CAI) units. The help points were installed in 166 stations by 2014, at which time the remaining stations were scheduled to have Help Points by the end of 2019. The Help Point installation timeline was later accelerated to the end of 2017.


NYC Subway editorial photography. Image of square, exterior - 35323817
src: thumbs.dreamstime.com


On The Go! Travel Station

On September 19, 2011, the MTA set up another pilot project, an online, interactive touchscreen computer program called "On The Go! Travel Station" (OTG). It lists any planned work or service changes occurring on the subway as well as information to help travelers find landmarks or locales near the stations with an OTG outlet, with advertisements as well. The first station to test this new technology was Bowling Green on the IRT Lexington Avenue Line. Other stations scheduled to participate in this program were Penn Station (with the LIRR), Grand Central Terminal (with Metro-North), Atlantic Avenue-Barclays Center in Brooklyn, and Jackson Heights-Roosevelt Avenue/74th Street-Broadway in Queens.

New and existing On the Go! kiosks were to receive an interface overhaul as a result of the MTA's partnership with Control Group, a technology and design consultancy firm. Control Group were adding route lookups, countdown to train arrivals, and service alerts. Between 47 and 90 interactive wayfinding kiosks were scheduled to be deployed in 2013. As of January 2016, there are 155 kiosks at 31 stations. At the completion of Phase 2, there will be a total of 380 kiosks installed.


New York Transit Museum - Wikipedia
src: upload.wikimedia.org


Cellular phone and wireless data

In 2005, the Transit Wireless company was formed in order to compete for the MTA's request for proposals for a wireless network in the subway system. The MTA ultimately awarded the contract for building and operating the network to Transit Wireless. The New York City Subway began to provide underground cellular phone with voice and data service, and free Wi-Fi to passengers in 2011 at six stations in Chelsea, Manhattan. The new network was installed and owned by Transit Wireless as part of the company's $200 million investment. The company expanded the services to 30 more stations in 2013 and signed an agreement with all 4 major wireless network operators (Verizon Wireless, AT&T, Sprint, and T-Mobile) to allow their cellular phone customers to use its network. The MTA and Transit Wireless are splitting the fees received from those wireless carriers for the usage of the network. The Wi-Fi service, which operates using antennae, is operated by Boingo Wireless.

Transit Wireless expected to provide service to the remaining 241 underground stations by 2017. The next 40 key stations (11 in midtown Manhattan and 29 in Queens) have antennas that were in service by March 2014. The wireless for these 40 underground stations were completed by October 2014. Phase 3 of the project was completed in March 2015 and added service to the Flushing-Main Street station in Queens, as well as stations in Lower Manhattan, West Harlem, and Washington Heights. Phase 4 of the project covered twenty underground stations in the Bronx and seventeen in Upper Manhattan; this phase, completed in November 2015, provided service to major stations such as Lexington Avenue-53rd Street, Lexington Avenue-59th Street, 149th Street-Grand Concourse, and 125th Street. Because Governor Andrew Cuomo had implemented a timeline for accelerated implementation of in-station wireless service, phases 6 and 7 of the Transit Wireless network build-out will connect the 90 remaining Brooklyn and Manhattan underground stations by early 2017, about one year ahead of the original completion date of 2018.

In late December 2016, it was expected that all stations would have wireless by the final day of that year. However, Governor Cuomo later announced that by January 9, that cellular connectivity and wireless service would be available in all underground stations, except at four stations. These stations were the New South Ferry station and the three stations on the BMT Fourth Avenue Line-Prospect Avenue, 53rd Street, and Bay Ridge Avenue--that would have wireless installed as part of their Enhanced Station renovations. Cellular connectivity was completed one year early. The entire project was completed for $300 million, with Transit Wireless sharing revenues derived from the network's service with the MTA. The partnership between Transit Wireless and the MTA is for 27 years.

In June 2016, the MTA began installing Wi-Fi in subway cars as well. Wireless service was installed on four R160 subway cars assigned to the Jamaica Yard, then tested along the all-underground E route; in-car Wi-Fi was expanded to 20 R160s on the E route by September. However, this pilot program was not advertised to passengers. In addition, the wireless service was not working all the time; one passenger described the signal on board the trains as spotty, and only really available on the platforms. At the time, the MTA was not planning to retrofit subway tunnels with wireless service. Still, this in-car Wi-Fi pilot program is part of the wider program to install Wi-Fi in underground stations and onboard newer MTA buses. Future subway cars, like the R211, will also include Wi-Fi upon their delivery.

In 2017, the MTA partnered with NYC Public Libraries, New York State, and Transit Wireless, to create Subway Library, a system that allows users to choose from a selection of e-books to read for free when connected to TransitWireless Wi-Fi.

Despite the rollout of Wi-Fi at all underground stations, wireless and cellular data are not available in the tunnels between the stations. In early 2018, the MTA started testing out Wi-Fi in the 42nd Street Shuttle tunnels.


Subway Data Goes Digital & Interactive in NYC with self-service ...
src: i.pinimg.com


Digital advertisements

The first major wave of digital advertisements in the subway were introduced with the deployment of the On the Go! Travel Station in 2011. From 2016 on, the LCD countdown clocks also provided another way to show advertisements to passengers.

In September 2017, the MTA announced plans to add 31,000 digital advertising screens in 5,134 cars, as well as 9,500 extra screens in stations, far more than what the clocks or travel stations could provide. The advertising screens are being installed by Outfront Media from 2019 to 2022. There would eventually be 50,000 screens systemwide. Prior to the announcement, most of the few digital advertising displays in use systemwide had been used to advertise the Second Avenue Subway's opening earlier that year.


Technology of the New York City Subway - Wikiwand
src: upload.wikimedia.org


Notes


MTA unveils prototype for its new open-gangway subway cars: photos ...
src: cdn.vox-cdn.com


References

Source of article : Wikipedia